410/Chem 22-23 / 41452

P.G. Semester-IV Examination, 2023 CHEMISTRY

Course ID: 41452 Course Code: CHEM-402E

Course Title: Physical Chemistry Special

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **five** of the following questions:

 $2 \times 5 = 10$

- a) Write down the Born-Oppenheimer approximation.
- b) Why is N₂ molecule inactive to rotational spectroscopy?
- c) Write down the effect of isotropic substitution on the spectrum of CO.
- d) Define the term 'plane polarised light.'
- e) Mention the selection rules for Raman and IR spectroscopy.
- f) Define the terms 'chemical shift' and 'Larmor frequency.'

g) What do you mean by the term 'Stark effect' in spectroscopy?

2. Answer any **four** of the following questions:

 $5 \times 4 = 20$

- a) (i) Discuss the principle of IR spectroscopy in the molecular structure elucidation. 3
 - (ii) Write down the rule of mutual exclusion in Raman spectroscopy. 2
- b) Write in short the applications of ESR and Mossbauer spectroscopy. 5
- c) (i) What is Raman scattering?
 - (ii) Describe the quantum theory of Raman effect. 1+4=5
- d) (i) Why is the selection rule for pure rotational Raman spectrum $\Delta J = \pm 2$ and $\Delta J = \pm 1$?
 - (ii) Explain Stokes and anti-Stokes lines.

3+2=5

- e) (i) What is the significance of zero point energy? Obtain an expression for zero point energy of an anharmonic oscillator.
 - (ii) Give selection rules for simple harmonic and anharmonic oscillator. 3+2=5

- f) Sketch and explain the polarizability ellipsoids for CO₂ molecule.
- 3. Answer any **one** of the following questions:

 $10 \times 1 = 10$

- a) (i) The rotational constant for ⁷⁹Br¹⁹F is 0.35717 cm⁻¹. What is the value of J for which the most intense line will be seen at 300K?
 - (ii) What is the effect of breakdown of Born-Oppenheimer approximation on P and R branches of the IR spectrum of a diatomic molecule?
 - (iii) The fundamental vibrational frequency of ¹H³⁵C1 molecule is 86.63×10¹² Hz. Calculate the zero point energy and force constant of HC1.
 - (iv) Explain the activity of the following molecules with respect to IR and microwave spectrum: H₂, HC1, CO₂, CH₄ and CH₃C1.

3+2+3+2=10

- b) (i) Write down a principle of NMR spectroscopy.
 - (ii) Write in short chemical applications of 'H-NMR'. 2

(iii) Prove that the NMR spectrum of a molecule containing *n* chemically equivalent nuclear spins consists of a single line, even though there are different coupling constants (Explain with NMR Hamiltonian).
